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Exact Shock Measures and Steady-State Selection in a
Driven Diffusive System with Two Conserved Densities
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We study driven 1d lattice gas models with two types of particles and nearest
neighbor hopping. We find the most general case when there is a shock solu-
tion with a product measure which has a density-profile of a step function for
both densities. The position of the shock performs a biased random walk. We
calculate the microscopic hopping rates of the shock. We also construct the
hydrodynamic limit of the model and solve the resulting hyperbolic system of
conservation laws. In case of open boundaries the selected steady state is given
in terms of the boundary densities.

KEY WORDS: Two-species ASEP; hydrodynamic limit; shock measure; sys-
tems of conservation laws; steady-state selection.

1. INTRODUCTION

On the macroscopic level driven diffusive systems are often described by
hydrodynamic equations for some relevant parameters (usually the par-
ticle densities). These partial differential equations are generally nonlin-
ear and can develop shocks, i.e., discontinuities in the space dependence
of the densities. These shocks behave as collective excitations in systems
with one conservation law: they can be characterized by only one param-
eter, namely their position, and the propagation can be described by single
particle dynamics.

Recently much attention was payed to the investigation of the sta-
tionary microscopic structure(1–3) and the microscopic dynamics(4–8) of
such shocks. Mostly the well-known asymmetric simple exclusion process
(ASEP) was studied: it was pointed out in ref. 7 (and for infinite systems
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in ref. 6) that for special tuning of densities and microscopic hopping rates
there exists a travelling shock with a step-like density profile even on the
microscopic scale, which behaves like a collective one-particle excitation.
However, little is known about the microscopic structure and dynamics
of shocks in systems with two conservation laws,(9–12) which recently have
become a focus of attention (for a review see ref. 13 and ref. 14, 15 for
more recent work).

In the present work we show that a shock measure with single-parti-
cle dynamics can describe also systems with two conserved densities, intro-
duced in Section 2. The position of the shock performs a biased random
walk just like in the ASEP (Section 3). In Section 4 we study the hydro-
dynamic limit of the model (under Eulerian scaling) which shows a larger
class of stable shock solutions. The hierarchical structure of the hydrody-
namic equations for this system allows us to deduct the steady state selec-
tion in an open system connected to particle reservoirs at its boundaries.

2. TWO-SPECIES EXCLUSION PROCESS

The model is defined on an open lattice with L sites and two types of
particles (A and B). Each lattice site can either be occupied by a particle,
which can be either A or B, or can be vacant (∅). Having two independent
conserved quantities requires that only hopping processes are allowed. For
simplicity we allow just for nearest neighbour hoppings. These are the
following:

A∅→∅A, ∅A →A∅,

B∅→∅B, ∅B →B∅,

BA→AB, AB →BA. (1)

A state of the model is defined through a probability measure Pη on
the set of all configurations η= (η1, η2, . . . , ηL), ηk ∈{A,B,∅}. For our pur-
poses it is convenient to use the Hamiltonian formalism (16) where one
assigns a basis vector |η〉 of the vector space (C3)⊗L to each configura-
tion and the probability vector is defined by |P 〉=∑η Pη|η〉. It is normal-
ized such that 〈s|P 〉= 1, where 〈s| =∑η〈η|. The time dependence is now
described by the master equation

d
dt

|P(t)〉=−H |P(t)〉, (2)
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through a “Hamiltonian” H which has as matrix elements Hη,η′ the hop-
ping rates between configurations η, η′. Since we have only nearest-neigh-
bor exchange processes the Hamiltonian in (2) can be written as

H =h1 +
L−1∑
k=1

hk,k+1 +hL, (3)

where hk,k+1 acts nontrivially only on sites k and k +1 (corresponding to
hopping) while h1, hL generates boundary processes specified below. Let
W

θ1θ2
θ ′

1θ
′
2

(θ1, θ2, θ
′
1, θ

′
2 ∈ {A,B,∅}) be an operator on C

3 ⊗ C
3 which acts on

the basis vectors |η1, η2〉 as

W
θ1θ2
θ ′

1θ
′
2
|η1, η2〉= δη1θ1δη2θ2 |θ ′

1, θ
′
2〉. (4)

Then hk,k+1 can be written as

hk,k+1 =�⊗(k−1) ⊗

 ∑

θ1θ2θ
′
1θ

′
2

−Γ
θ1θ2
θ ′

1θ
′
2

(
W

θ1θ2
θ ′

1θ
′
2

−W
θ1θ2
θ1θ2

)
⊗�⊗(L−k−1). (5)

The diagonal term in (5) stands for the conservation of probability. The
model is defined through the rates Γ

θ1θ2
θ ′

1θ
′
2

which describe the hopping pro-

cess θ1θ2 → θ ′
1θ

′
2. In our model the nonzero rates are the following:

Γ A∅
∅A =a1, Γ ∅A

A∅ =a2,

Γ B∅
∅B =b1, Γ ∅B

B∅ =b2,

Γ BA
AB = c1, Γ AB

BA = c2.

The boundary terms h1 and hL in (3) act only on the first and Lth site,
respectively and choosing the basis

|A〉=

 1

0
0


 , |B〉=


 0

0
1


 , |∅〉=


0

1
0


 , (6)

they have the form

h1 =

βA

l +γ −
l −αA

l −γ +
l

−βA
l αA

l +αB
l −βB

l

−γ −
l −αB

l βB
l +γ +

l


⊗�⊗(L−1), (7)
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hL =�⊗(L−1) ⊗

βA

r +γ −
r −αA

r −γ +
r

−βA
r αA

r +αB
r −βB

r

−γ −
r −αB

r βB
r +γ +

r


 , (8)

where αA(B), βA(B) and γ +(−) are the rates for the following processes:

αA : ∅→A, αB : ∅→B, (9)

βA : A→∅, βB : B →∅, (10)

γ + : B →A, γ − : A→B, (11)

and the indexes l and r indicate the left and right boundary, respectively.
It is known that in the finite periodic system there is a family of

steady states which are product measures.(11,17) We call Pη a product mea-
sure if it has the form

Pη =P (1)
η1

P (2)
η2

· · ·P (L)
ηL

, (12)

where P
(k)
ηk

is a probability measure on {A,B,∅}. This means that the
probability vector has the following direct product form

|P 〉 =

 pA

1
1−pA

1 −pB
1

pB
1


⊗


 pA

2
1−pA

2 −pB
2

pB
2




⊗· · · · · ·⊗

 pA

L

1−pA
L −pB

L

pB
L


 , (13)

where pX
k is the probability of finding an “X” particle on site k.

Straightforward calculations show that for having a stationary prod-
uct measure with uniform densities

|P 〉=

 ρA

1−ρA −ρB

ρB




⊗L

, (14)

the rates have to satisfy the following condition(11,17)

a1 −a2 −b1 +b2 + c1 − c2 =0. (15)
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This is already a sufficient condition in case of an infinite chain or peri-
odic boundary conditions. For open boundaries there are some additional
restrictions for the boundary rates, for which we find

(a1 −a2)ρ
A(1−ρA)− (b1 −b2)ρ

AρB

=αA
l (1−ρA −ρB)− (βA

l +γ −
l )ρA +γ +

l ρB (16)

= (βA
r +γ −

r )ρA −αA
r (1−ρA −ρB)−γ +

r ρB, (17)

(b1 −b2)ρ
B(1−ρB)− (a1 −a2)ρ

AρB

=αB
l (1−ρA −ρB)− (βB

l +γ +
l )ρB +γ −

l ρA (18)

= (βB
r +γ +

r )ρB −αB
r (1−ρA −ρB)−γ −

r ρA. (19)

The physical meaning of these equations is that the steady state currents
of the conserved densities have to be fitted at the boundaries. In the fol-
lowing we will assume that condition (15) is fulfilled. For boundary rates
as given above we say that the system is in contact with a reservoir of
densities ρA,B .

3. TIME-DEPENDENT SHOCK MEASURES

Krebs et al. in ref. 7 pointed out that in the ASEP with open bound-
aries there is a family of shock measures which closes under the time evo-
lution of the process, i.e., an initial measure from this family evolves into
a linear combination of measures from this family. Below we shall refer
to such a set as an invariant family of shock measures. Each element is a
product measure with a step-like density profile; ρl(r) on the left (right) of
the shock. These shock measures are characterised by the position of the
shock. If |Pk〉 is a state having the shock between the sites k and k+1 then
these states for k=0,1,2, . . . ,L generate a subspace of the vector-space of
states which is invariant under time evolution and thus the many-particle
problem is reduced to a one-particle one. This property holds if the den-
sities ρl,r satisfy the condition

p

q
= ρr(1−ρl)

ρl(1−ρr)
, (20)

where p and q are the hopping rates of the particles to the right resp. left.
The resulting one-particle dynamics have a natural interpretation as a sim-
ple random walk of the shock position (see Fig. 1).

In the following we search for the conditions under which there exists
in our three-state model an invariant family of shock measures which are
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Fig. 1. Time dependence of the density profile in the one-species ASEP starting from a
shock measure satisfying (20). For positive times the measure is a diffusive linear combina-
tion of step-like shock measures.

product measures with a jump in the local particle density. To this end let
|Pk〉 be defined as

|Pk〉=

 ρA

l

1−ρA
l −ρB

l

ρB
l




⊗k

⊗

 ρA

r

1−ρA
r −ρB

r

ρB
r




⊗L−k

. (21)

The probability vectors |Pk〉 define an L+ 1-dimensional subspace of the
vector space on which H acts. Closure of this family of shock measures
under the time evolution generated by H is equivalent to requiring

H |Pk〉=−dr |Pk+1〉−dl |Pk−1〉+ (dr +dl)|Pk〉 (22)

for 1� k �L−1, and

H |P0〉 = −d̄r |P1〉+ d̄r |P0〉, (23)

H |PL〉 = −d̄l |PL−1〉+ d̄l |PL〉. (24)

This is easy to see because of having only nearest neighbour interactions
double hoppings of the shock position (e.g. |Pk〉→|Pk+2〉) cannot occur. If
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this condition can be met by an appropriate choice of model parameters
the quantities dl,r and d̄l,r are non-negative real numbers representing the
hopping rates of the shock in the bulk (dl,r ) and at the boundaries (d̄l,r ).

To investigate whether (22–24) can be satisfied it is better to rewrite
the Hamiltonian in the form

H =h1 + (a1 −a2)n
A
1 + (b1 −b2)n

B
1

+
L−1∑
k=1

h̃k,k+1 +hL − (a1 −a2)n
A
L − (b1 −b2)n

B
L, (25)

where

h̃k,k+1 =hk,k+1 − (a1 −a2)(n
A
k −nA

k+1)

−(b1 −b2)(n
B
k −nB

k+1). (26)

Here and in (25) nA
k and nB

k are the particle number operators for the A
and B particles on site k.

As a result h̃k,k+1|Pl〉=0 for k �= l. Therefore, one has

H |Pk〉= h̃k,k+1|Pk〉
+
(
h1 +hL + (a1 −a2)(n

A
1 −nA

L)

+ (b1 −b2)(n
B
1 −nB

L)
)

|Pk〉 (27)

for 1� k �L−1, and

H |Pk〉=
(
h1 +hL + (a1 −a2)(n

A
1 −nA

L)

+ (b1 −b2)(n
B
1 −nB

L)
)

|Pk〉 (28)

for k =0,L.
At the boundaries one has to satisfy (16) with the slight modification

that on the left (right) boundary we write ρ
A,B
l (ρA,B

r ) instead of ρA,B

αA
l (1−ρA

l −ρB
l )− (βA

l +γ −
l )ρA

l +γ +
l ρB

l

= (a1 −a2)ρ
A
l (1−ρA

l )− (b1 −b2)ρ
A
l ρB

l , (29)

(βA
r +γ −

r )ρA
r −γ +

r ρB
r −αA

r (1−ρA
r −ρB

r )

= (a1 −a2)ρ
A
r (1−ρA

r )− (b1 −b2)ρ
A
r ρB

r , (30)
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and the same for the B particles

αB
l (1−ρA

l −ρB
l )− (βB

l +γ +
l )ρB

l +γ −
l ρA

l

= (b1 −b2)ρ
B
l (1−ρB

l )− (a1 −a2)ρ
A
l ρB

l , (31)

(βB
r +γ +

r )ρB
r −γ −

r ρA
r −αB

r (1−ρA
r −ρB

r )

= (b1 −b2)ρ
B
r (1−ρB

r )− (a1 −a2)ρ
A
r ρB

r . (32)

This fixes a manifold of boundary parameters required to satisfy (22–24).
The physical interpretation is a connection to boundary reservoirs with
different left and right densities respectively. Requiring (29–32) for the
boundary operators h1 and hL simplifies (27) and leads to

H |Pk〉= h̃k,k+1|Pk〉
+
(
(a1 −a2)(ρ

A
l −ρA

r )

+ (b1 −b2)(ρ
B
l −ρB

r )
)

|Pk〉 (33)

for 1� k �L−1. Thus satisfying (22) is equivalent to requiring

h̃k,k+1|Pk〉=−dr |Pk+1〉−dl |Pk−1〉
+
(
dr +dl − (a1 −a2)(ρ

A
l −ρA

r )

− (b1 −b2)(ρ
B
l −ρB

r )
)

|Pk〉 (34)

for 1� k �L − 1. Straightforward but lengthy calculation shows that
h̃k,k+1|Pk〉 has this form for 1� k �L−1 if and only if

a1 =b1 =:p, a2 =b2 =:q, (35)
p

q
= ρr(1−ρl)

ρl(1−ρr)
, (36)

ρA
l

ρB
l

= ρA
r

ρB
r

=: r, (37)

where ρl(r) =ρA
l(r) +ρB

l(r) is the total density of particles on the left (right)
of the shock. We note here that (35) together with (15) gives also c1 = c2.
This means that the A and B particles behave the same way: the hop-
ping rates to the left and to the right are p and q for both and also
the exchange rates c1 and c2 are the same in both directions. Equations
(23,24) give extra conditions for the boundary rates, namely

αA
l = rαB

l αA
r = rαB

r . (38)



Exact Shock Measures and Steady-State Selection 63

This together with (29–32) give conditions also for the boundary rates
β

A,B
l,r and γ +−

l,r .
The rates dr and dl which describe the diffusion of the shock position

to the right and to the left are

dr = ρr

ρl

q = 1−ρr

1−ρl

p, dl = ρl

ρr

p = 1−ρl

1−ρr

q. (39)

In addition we find the boundary rates

d̄r = αl

ρl

−ρr(p −q)= (p −q)(1−ρr)

+ rβA
l +βB

l

(r +1)(1−ρl)
, (40)

d̄l = αr

ρr

+ρl(p −q)=−(p −q)(1−ρl)

+ rβA
r +βB

r

(r +1)(1−ρr)
, (41)

where αl(r) =αA
l(r) +αB

l(r).
Using (36) the bulk shock hopping rates (39) become

dl(r) = (p −q)
ρl(r)(1−ρl(r))

ρr −ρl

(42)

as in the ASEP.(6,7) Since by identifying A and B particles one arrives at
the one-species ASEP, it is not surprising that (36) and (42) are in full
agreement with the corresponding formulas of the ASEP. The novelty is
that (a) the family of product measures with step-like density profiles sat-
isfying (37) remains invariant even if one distinguishes between A and B
particles, (b) there is no other possibility for having such an invariant fam-
ily of shock measures (up to relabelling the states A, B and ∅). Notice that
this solution describes a single shock whereas generically a system with
two conservation is expected to have two stationary shocks.(9,12)

4. HYDRODYNAMIC LIMIT

4.1. Derivation of the Partial Differential Equation

In the previous sections the microscopic dynamics of the two-species
ASEP was studied. It was found that there is an invariant family of prod-
uct measures with step-like density profiles if criterion (35) for the rates
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and criteria (36), (37) for the densities are fulfilled. It is also of interest
to drop the conditions (36), (37) and see how this model behaves on the
macroscopic scale, i.e., when the space and time is rescaled as tmac = tmica,
x = ka and the lattice spacing a → 0 (Eulerian scaling). In this subsection
we restrict the discussion to the case of infinite chains (or torus geometry).
Finite systems with open boundaries are considered in the last subsection.

Performing the Euler scaling one can easily construct the naive hydro-
dynamic equations of a model having two conserved quantities (v and u)
and stationary product measure. These describe the macroscopic time-evo-
lution of the conserved quantities

∂tv + ∂xjv(v, u) =0, (43)

∂tu+ ∂xju(v, u) =0, (44)

where jv(v, u) and ju(v, u) are the currents of v and u assuming homo-
geneous product measure. It is important to note that the hydrodynamic
limit of a driven lattice gas is different from the continuum mean-field
description: while both of them deals only with averages the latter neglects
the local correlations while the former does not. Our case is exceptional
in the sense that the exact currents as a function of the densities—which
one has to know for the correct hydrodynamic limit—are the same as the
mean-field currents. This is due to the fact that in our system the homo-
geneous product measure is stationary (15). In other systems, where this
does not hold, the naive mean-field description (even improved mean-field
approaches) would usually fail in the continuum limit even if there are
only short range correlations. We also have to note that even in case of
product measure stationary states it is far from trivial that the above set
of conservation laws describe correctly the macroscopic dynamics of the
model. However, a mathematically rigorous proof is available that in all
systems having nearest neighbor dynamics with two conserved densities (v
and u) and stationary product measure, the time evolution of the densi-
ties under Eulerian scaling is described by Eqs. (43) and (44) until the
occurrence of the first shock.(11) For closely related results on two-spe-
cies systems, see refs. 12,14, for an apparent failure of the hydrodynamic
description, see ref. 15 and earlier work on condensation in two-species
systems.(13,18,19)

For our model it is useful to introduce the new set of conserved quan-
tities (v, u) instead of (ρA,ρB)

v = 1−ρA −ρB (the density of vacancies), (45)

u = ρA −ρB. (46)



Exact Shock Measures and Steady-State Selection 65

The associated currents are

jv = −(p −q)v(1−v), (47)

ju = (p −q)vu. (48)

Plugging these into (43) and (44) one arrives to the hydrodynamic equa-
tions of the model

∂tv − (p −q)∂x(v(1−v)) =0, (49)

∂tu+ (p −q)∂x(vu) =0. (50)

In the special case when p = q the currents are zero and the solution of
(43) and (44) becomes trivial. In this case the behaviour of the microscopic
model is diffusive so one has to perform diffusive scaling (tmac = tmica

2,
x =ka, a →0) to see the nontrivial macroscopic behaviour.

It is to be noted that the generic set of PDEs describing systems with
three local states and satisfying (15) is the so-called Leroux’s system:(11,12)

∂tσ + ∂x(στ) =0, (51)

∂t τ + ∂x(σ + τ 2) =0. (52)

It means that there are always such linear combinations (σ, τ ) of the con-
served quantities (shifted by an irrelevant constant) which satisfy (51) and
(52).(11) However, in our case, when a1 =b1 and a2 =b2, σ and τ turn out
to be linearly dependent and Eq. (51) and (52) are equivalent (and corre-
spond to (49)). Therefore our model has to be investigated separately.

Note that Eq. (49) for v is decoupled from u and takes the form of
the well-known Burgers equation, which can be solved exactly (20). Intro-
ducing

φ = (ρA −ρB)/(ρA +ρB)=u/(1−v), (53)

one gets the linear wave equation for φ

∂tφ + (p −q)v∂xφ =0, (54)

meaning that φ is constant along the curves x(t) satisfying the ordinary
differential equation

dx

dt
=v(x, t), (55)

where v(x, t) is the solution of (49). The physical meaning of x(t) is that
this is the expected path of a single tagged particle (either A or B).
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4.2. Development of an Initial Sharp Interface

Suppose that at t = 0 there is a sharp interface separating domains
characterised by vl(r) and ul(r) on the left (right), respectively. We assume
that vl >vr in order to guarantee the stability of the interface.(9,16) No fur-
ther conditions on the values of u, v are imposed.

The time and space dependence of v is known since it is described by
the inviscid Burgers equation (49): the step-like front (having vl(r) on the
left (right) of it) is travelling with velocity

V1 = (q −p)(1−vl −vr). (56)

The x(t) curves defined by equation (55) are then broken lines as in
Fig. 2. One can see that φ changes while crossing the dashed line indicat-
ing that there is another shock in the system travelling with larger velocity
(without loss of generality we assume that p >q)

V2 = (p −q)vr >V1. (57)

x0 x

t

Fig. 2. The x(t) curves of equation (55) for the case when v(x, t) is a shock-solution of the
Burgers equation (49). The position of this shock (starting from x0) is marked by the thick
solid line. u also changes on the dashed line indicating another shock in the system, but this
is not microscopically sharp.
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Generally a single sharp interface at t =0 forms two shocks (or rare-
faction waves) at t >0 in systems having two conservation laws .(9) For the
complete analysis one has to study the eigenvalues and eigenvectors of the
Jacobian

∂(ju, jv)

∂(u, v)
= (p −q)

(
v u

0 2v −1

)
, (58)

which give the characteristic velocities of the different types of density
fluctuations.(9) In this specific system these are

λ1 = (p −q)(2v −1), e1 =
(

u

v −1

)
, (59)

λ2 = (p −q)v, e2 =
(

1
0

)
. (60)

The two corresponding types of shocks have either constant φ across the
discontinuity (type 1, occurring along the solid line in Fig. 2) or constant
v (type 2, occurring along the dashed line in Fig. 2). A shock (micro-
scopically sharp interface) satisfying either of these relations initially does
not split, whereas a generic shock splits into two shocks of type 1 and
type 2 respectively. We remark that condition (37) translates into φl = φr

for the quantity φ. Hence the shock studied in the previous section is of
type 1. Notice also that in the second mode u is changed but v is not.
Walking along these lines in the (u, v) space λ1 remains unchanged. This
means that if there is a discontinuity in u (with constant v) then the fluc-
tuations in u are not driven towards the “shock” but they travel with
the same mean velocity resulting in an unstable shock on the microscopic
scale. However, since in the original lattice model the width of the step is
expected to scale with

√
t due to the diffusive dynamics of A and B par-

ticles the interface remains sharp under Eulerian scaling.
The physical significance of two types of shocks can be easily demon-

strated considering the following example: at t = 0 the system is partially
occupied with only A particles on the left of x0 and fully occupied by B

particles on the right. This setting models a situation where particles (A)
fall down (e.g. due to gravity) and enter a medium (B) where they have
no weight. Hence they penetrate diffusively (with vanishing macroscopic
flux), but pile up ballistically due to the constant incoming macroscopic
flux. As a result two interfaces emerge (see Fig. 3). The second (lower)
interface has velocity 0 since vr = 0, see (57). Although the particles dif-
fuse and start mixing on the lattice scale at the A–B interface, this remains
invisible on the Euler scale.
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Fig. 3. The time development from a special initial condition: A particles fall down (e.g.
due to gravity) and enter a medium where they have no weight, hence they penetrate diffu-
sively but pile up ballistically resulting in two interfaces. The width of the domain wall
between the A (black) and B (gray) particles scales with

√
t while the other domain wall

remains microscopically sharp (however, on a diffusive scale one could see the fluctuations of
the position of this sharp interface).

The other interface (type 1) separating domains with different densi-
ties of A particles corresponds to the usual shocks which are known from
the study of the Burgers equation. Here both u and v are changed (but φ

remains constant).
In Fig. 4 we show a more general example for the time development

of the system starting from an initial state having a step in both densi-
ties at the origin. The second mode also can develop rarefaction waves
if the density on the left is lower than on the right in the initial state.
We note that the shock coming from the second mode always stays to the
right of the shock/rarefaction wave coming from the first mode since it is
faster (57).

4.3. Steady-State Selection in the Open System

In a finite system with open boundaries one is left with the question
of steady state selection. In the infinite system all the states with constant
density profiles are stationary, however, in the finite system with bound-
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u1
u2

v2t

v1

v2

u,v

0(v1+v2-1)t

Fig. 4. Development of the densities v and u under Eulerian scaling starting from an ini-
tial state with step-like density profiles: v1, u1 on the left and v2, u2 on the right of the ori-
gin. The first interface (on the left) is a shock coming from the Burgers-equation and corre-
sponds to the solid line in Fig. 2. The second one (on the right) is not microscopically sharp.
In Fig. 2 it is the dashed line.

aries acting as particle reservoirs the bulk densities depend non-trivially on
the boundary densities. Setting ∂t = 0 in (43) and (44) one arrives at the
solution that u and v are constant, so in general the densities cannot fit
both boundaries. This discrepancy is resolved by the appearance of shocks
in the original lattice model leading to discontinuities at either (or both)
boundary in the hydrodynamic limit.

In case of one conserved density the density-current relation already
determines the phase diagram in terms of the boundary densities(21,22) but
in case of more conservation laws the question turns out to be much more
intricate and no general rule is known to apply.(10) However, in our model
it is possible to determine the resulting steady state for given boundary
densities.

Since the dynamics of v is independent of u and follows the usual
ASEP dynamics the profile can be deduced from the ASEP phase dia-
gram.(23–25) Our task is then to determine the bulk value of u in terms of
the boundary densities uleft, uright, vleft, vright.

Since all the fluctuations in u travel with velocity v �0 one would
think that ubulk is only determined by the left boundary if v �= 0. How-
ever, this is not the case because a discontinuity in v can be localised at
this boundary which also induce a step in u. The previously introduced
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φ, however, does not change at this discontinuity which suggests that the
bulk value of φ is given by the left boundary (φbulk = φleft). In order to
verify this heuristic reasoning we make use of a technique to determine the
steady state which is widely used for systems with a single conservation
law. One introduces a viscosity term in (43) and (44) proportional to ν

which contain a second derivative of the densities leading to second order
equations for the stationary profiles. Now the profiles can fit both bound-
aries for any value of ν and after performing limit ν →0 one can get the
selected density.

In case of one single conservation law this technique is quite robust
in the sense that the resulting bulk density is essentially independent of the
specific choice of the viscosity term (as long as it contains a second order
derivative). For more conservation laws this method is mathematically not
well-studied and one has to be more careful with the choice of viscosity
term. For systems with a stationary product measure there is a natural
choice for these terms introduced in ref. 9. Namely, when one derives the
hydrodynamic equations from the lattice continuity equations one uses a
Taylor expansion of the current (as a function of the densities) in the lat-
tice constant. Keeping the second order terms leads to a unique viscosity
term which is proportional to the lattice constant a.

In Appendix A we show that using this technique for our model the
above conjecture, that φbulk =φleft, is confirmed if vright �=0, which implies

u=uleft
1−v

1−vleft
if vright �=0. (61)

Summarizing the results (see also Fig. 5) we find

vbulk =




vleft if vleft �1/2 and vright >1−vleft,

vright if vright �1/2 and vright <1−vleft,

1/2 if vleft �1/2 and vright �1/2,

(62)

ubulk =uleft
1−vbulk

1−vleft

=




uleft if vleft �1/2 and vright >1−vleft,

uleft
1−vright
1−vleft

if 0<vright �1/2 and vright <1−vleft,

uleft
1/2

1−vleft
if vleft �1/2 and vright �1/2.

(63)

On the coexistence line (0 < vright = 1 − vleft < 1/2) the stationary
v-profile is linear as known from the ASEP.(23,24) This induces also a lin-
ear profile for u according to (61).
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vright

vleft

v=vleft

v=vright

u=uleft

v=1/2

0 1/2 1

1/2

0

1

u=uleft
1-vright
1-vleft u=uleft

1/2
1-vleft

LD

HD

MC

Fig. 5. The phase diagram of the open system. Since the vacancies follow the ASEP
dynamics the boundary values of v determine the phase according to the ASEP phase
diagram. In addition Eq (61) determines the stationary value of u in all phases except on
the dashed line where one has symmetric diffusion of A and B resulting in linear profiles for
u connecting uleft/(1−vleft) and uright.

If vright =0 then there are no vacancies in the system leading to sym-
metric diffusion of A and B particles. This results in linear profiles for u

connecting uleft/(1 − vleft), which is the value of u after the discontinuity
located at the left boundary, and uright as expected from the symmetric
exclusion process (SEP) (26) and confirmed in Appendix A.

5. CONCLUSION

We have introduced an asymmetric exclusion process with two con-
served species of particles. Its study is part of the program to understand
the emergence of macroscopic behaviour from microscopic models of non-
equilibrium diffusive interacting particles and to elucidate the significance
of boundary conditions in driven diffusive systems. Under heuristic Euleri-
an scaling we obtain a system of PDEs which can be analysed analytically.
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As one would have expected from the nonlinear current-density relation
the system may produce shock discontinuities on the macroscopic scale.
There are two types of shocks (as expected in systems with two conserva-
tion laws) for which we calculate the respective shock velocities and inter-
mediate densities in terms of the asymptotic limiting densities.

The model we have introduced here allows for a rigorous analysis of
the microscopic structure of a shock of type 1 (with a discontinuity in
the vacancy density), provided that some special conditions on the hop-
ping parameters and shock densities are satisfied. For this shock one finds
the same behaviour as for the ASEP, suggesting that also for nongen-
eric values of the limiting densities of the shock the behaviour would
be similar. Shocks of type 2 (constant vacancy density) are microscopi-
cally unstable, they correspond to diffusive spreading as in the symmetric
exclusion process.

Part of our investigation is devoted to the problem of steady state
selection in the open system.(27) Unlike for driven diffusive system with
a single species of particles(16) there is no developed theory of boundary-
induced phase transitions for systems with two or more conservation laws.
Using the known phase diagram of the ASEP and the microscopic prop-
erties of the shock in our particular model we have derived the station-
ary phase diagram. So our model, even though degenerate, may serve as
a testing ground for any general theory. With a view on some of our ear-
lier results on driven diffusive two-species systems with open boundaries
we note that we found that the heuristic approach to steady-state selection
of ref. 9 reproduces the independently derived phase diagram.

An intriguing observation is that the u-density in the phase diagram
depends continuously on the left v-density throughout the maximal cur-
rent phase. In order to explain the significance of this observation we note
that the phase diagram of single-species systems can be predicted from the
current-density relation in terms of boundary densities,(21,22) which in gen-
eral are unknown functions of the boundary rates of the model. On the
other hand any numerical study of a given model yields the phase diagram
in terms of the boundary rates, not the boundary densities. Therefore,
a comparison between theoretical predictions and numerical observations
requires knowledge of the nonuniversal relationship between boundary
densities and boundary rates. In the ASEP and generally in single-species
systems the order parameter (the bulk density) in the maximal current
phase does not depend on the left boundary density. Hence it is not pos-
sible to measure the relationship between the left boundary density and
the boundary rates of the model. This in turn makes it impossible to pre-
dict the phase diagram in terms of the boundary rates. In the present two-
species model, however, the left boundary density can be measured in the
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maximal current phase as a function of the system parameters through
measuring u.

This leads to an unexpected offspin of our investigation: by regarding
the two-species model as an exclusion process with two kinds of vacan-
cies (by identifying vacancies with particles and the two kinds of particles
with vacancies). Generalizing other single-species systems in a manner sim-
ilar to what is done here, viz., leaving their dynamics unchanged by just
introducing tagged diffusive vacancies, may provide a means of measur-
ing those postulated boundary densities in terms of the model parameters
even in parts of the phase diagram where the order parameter itself does
not depend on the boundary densities.

Finally we remark that in principle the processes A → B or B → A

could also be excluded (i.e. γ
+(−)
l(r) = 0) from our process. We only keep

them for the sake of generality. If one wants to choose the boundary con-
ditions to mimic certain boundary densities these rates are in general non-
zero. However, in our model these processes don’t play an important role
unlike in the so-called bridge model where they are responsible for sponta-
neous symmetry breaking.(28) The precise mechanism for this phenomenon
and a quantitative description, however, still remain a major challenge in
the study of two-species systems with open boundaries.
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APPENDIX A. SOLUTION OF THE HYDRODYNAMIC EQUATIONS

WITH FINITE VISCOSITY

The viscous hydrodynamic equations for the steady state coming from
the method described in ref. 9 (see Section 4.3) are the following

(p −q)v′(2v −1) = a
p +q

2
v′′, (64)

(p −q)(u′v +v′u) = a
p +q

2
(u′′v −v′′u)

+ac
(
(1−v)u′′ +uv′′) . (65)

Substituting u= (1−v)φ in (65) and using (64) we arrive at the following
equation for φ
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v(1−v)φ′ = a(p +q)

2(p −q)

(
v(1−v)φ′′ −2vv′φ′)

+ ac

p −q

(
(1−v)2φ′′ −2(1−v)φ′v′

)
. (66)

One can immediately see here that φ = const. is a solution if it fits both
boundaries, i.e., if φleft =φright. When this does not hold (this is the case
in general) then one has

d
dx

ln |φ′|= 2v′

1−v
+ v

a
p−q

(p+q
2 v + c(1−v)

) . (67)

Integrating from the right boundary we get

ln |φ′(y)| = ln |φ′(1)|

−
∫ 1

y

v

a
p−q

(p+q
2 v + c(1−v)

)dx

−2
∫ vright

v(y)

dv

1−v
. (68)

Assuming that the sign of φ′ does not change in the system we arrive at

φ′(y) = φ′(1)

(
1−vright

1−v(y)

)2

× exp

(
−p −q

a

∫ 1

y

v
p+q

2 v + c(1−v)
dx

)
. (69)

For strictly positive v in the bulk of the system one has φ′(y)→0 as a→0
for any fixed y <1 thus the limiting φ profile is flat everywhere apart from
the right boundary, which implies φbulk =φleft.

There is no positive lower bound for v if and only if vright =0 (dashed
line in Fig. 5). In this case v(x)→ 0 everywhere as a → 0 apart from the
left boundary (provided vleft �=1) which implies φ′′(x)→0 for any fixed x >

0 according to (66). We still have to show that φ does not have a discon-
tinuity in the a → 0 limit at the left boundary. For this we evaluate φ′(0)

and show that it does not diverge. Similarly to (69) one has
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φ′(0) = φ′
bulk

(
1

1−vleft

)2

× exp

(
−p −q

a

∫ y

0

v
p+q

2 v + c(1−v)
dx

)
, (70)

where the upper limit of the integration 0 < y �1 is arbitrary because of
the fast decay of the integrand. Since the integrand is non-negative the
exponential cannot diverge which gives

lim
a→0

φ′(0)<∞. (71)

This means that the φ profile is the linear function connecting the two
boundary values. The u profile, however, has a discontinuity at the left
boundary according to (53) and jumps from uleft to uleft/(1−vleft). From
here it goes linearly to the right boundary value uright.

REFERENCES

1. P. A. Ferrari, Shocks in one-dimensional processes with a drift, in Probability and Phase
Transition, G. Grimmett, ed. (Dordrecht: Kluwer), 1994.

2. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, J. Stat. Phys. 73:813 (1993).
3. B. Derrida, J. L. Lebowitz, and E. R. Speer, J. Stat. Phys. 89:135–167 (1997).
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